Белый карлик – загадка Вселенной или естественный ход вещей
Неопределенность оценки звездного населения нашей галактики объясняется техническими трудностями обнаружения объектов. Заглянуть вглубь космоса мешают огромные массивы звездного газа и космической пыли, туманности и скопления, населяющие рукава галактики Млечный путь.
В те годы, когда техника не позволяла детально изучать космическое пространство, белые карлики считались редким явлением. Однако сегодня человечество вооружено до зубов мощнейшими телескопами, которые могут заглянуть в глубины космоса под иным спектром. В среднем, пространственная плотность белых карликов составляет 100 звезд на сферу космического пространства диаметром 60 световых лет. В нашей галактике существует до полутора тысяч подобных объектов.
Галактика Млечный путь, белые карлики
Полторы тысячи — это довольно много, учитывая возраст Вселенной. Т.е. за 13-14 млрд. лет в пределах галактики Млечный путь внушительное количество звезд уже находится в преклонном возрасте, ожидая своей дальнейшей участи. Если брать в расчет сотни, десятки сотен других галактик, то это число соответственно многократно увеличится. Учитывая небольшие размеры, которые свойственны таким звездам, то в действительности их может оказаться значительно больше.
Белый карлик -это звезда по размерам равная планете Земля, однако масса такой звездочки в сто тысяч раз больше массы нашей голубой планеты. Как правило, масса белого карлика варьируется в диапазоне 0,6-1,44 солнечных масс. Для этой категории звезд характерным является зависимость «масса-радиус». Чем больше масса стареющей звезды, тем меньше ее размеры. Из школьного курса астрономии известно, что белые карлики являются обнажившимся ядром звезды, которая сбросила верхний слой звездной материи. По факту такое ядро имеет небольшие размеры, является горячим. Низкая светимость есть доказательство отсутствия у этого небесного тела термоядерных реакций. Да и откуда им взяться! За миллиарды лет существования звезды, ее запасы водорода – основного звездного топлива — исчерпались. Основными компонентами белого карлика теперь стали не водород и гелий, а углерод и кислород. Плотность такого обнажившегося ядра колоссальна и составляет 10⁶-10⁷ г/см³.
Такая высокая плотность обусловлена чудовищным давлением. Остаточная материя пребывает в состоянии гравитационного баланса, который создается сочетанием массы и размеров объекта.
Остывающий белый карлик
Отсутствие ядерных реакций приводит к тому, что звезда начинает медленно остывать. Интенсивность излучения падает сравнительно медленно, на 1-2% за сотни лет. Процесс остывания сильно растянут по времени и может продлиться триллионы лет, прежде чем звезда исчезнет в космическом пространстве как материальное тело. Температура звезды, только что перешедшей в категорию пенсионеров, на поверхности довольно высокая — 100-200 тыс. Кельвина. Для старых белых карликов температура на поверхности уже достаточно низкая — 5000К.
Солнце также ожидает подобная судьба. Через 5-6 млрд. лет наше главное светило неизбежно истратит весь запас водорода и гелия, уйдя на пенсию в статусе белого карлика.
Что такое белый карлик: звезда или фантом?
Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.
После того, как звезда израсходовала весь водород, ее ядро под воздействием гравитационных сил и колоссального внутреннего давления начинает сжиматься. Теряя основную часть своей оболочки, небесное светило достигает предел массы звезды, при которой может существовать как белый карлик, лишенный источников энергии, продолжая по инерции излучать тепло. На самом деле белые карлики — это звезды из класса красных гигантов и сверхгигантов, утративших наружную оболочку.
Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.
Физика процесса
По сути, белые карлики являются огарками звезд, утративших свою жизненную силу и энергию. В отличие от обычных желтых карликов, где звездная материя пребывает в равновесии, белые карлики лишены такого устойчивого баланса. Для того, чтобы силы внутренней гравитации могли противостоять внешнему воздействию, нужно иметь мощные источники внутренней энергии. В противном случае, теряя часть своей материи, звезда быстро бы разрушилась под воздействием гравитации. Внутренним источником энергии является реакция термоядерного синтеза, в ходе которой водород превращается в гелий. Запасы водорода определяются массой звезды, соответственно от этого зависит и длительность термоядерных реакций. Как только водородное топливо выгорает, звездная материя утрачивает равновесие. Под действием собственной силы тяжести звезда начинает стремительно сжиматься, превращаясь из огромного красного гиганта в маленький белый карлик.
Процесс охлаждения белого карлика
С точки зрения квантовой физики этот процесс можно объяснить следующим образом. Атомы начинают сжиматься, теряя внутренние энергетические связи. Увеличившаяся плотность объединяет электроны в новую субстанцию — вырожденный электронный газ. В таком состоянии электроны плотно взаимодействуют друг с другом, противодействуя силам гравитационного сжатия. Образуется так называемое голое ядро, которое не имеет ни внешней оболочки, ни короны.
На этом этапе эволюции звезд решающая роль принадлежит квантовым свойствам элементарных частиц. Этому способствует такое явление, как вырожденное давление, возникающее в результате сильнейшего сжатия материи в недрах небесного тела. Процесс гравитационного сжатия у белого карлика не возникает на пустом месте. Это происходит постепенно до тех пор, пока расстояние между ядрами атомов не уменьшится до размеров радиуса электронов. Дальнейшее сжатие невозможно, так как оболочка электронов уже не подвержена физическим изменениям. В таком состоянии электроны двигаются хаотично, теряя связь с ядрами. Такая квантовая механика характерна для внутреннего строения металлов, где кинетическая энергия перерастает в тепловую и распределяется от внутренних областей к поверхности, поэтому можно утверждать, что белый карлик напоминает раскаленный кусок металла.
Электронный вырожденный газ
Для электронного газа характерна одна особенность. В процессе сжатия скорость электронов постоянно растет. Самые быстрые электроны стремятся занять любое освободившиеся место, тем самым уменьшая объем газовой субстанции. По мере приближения к поверхности ядра вырожденное давление ослабевает, что приводит к снижению температуры стареющей звезды. Здесь процесс ионизации атомов еще только начинается, поэтому звездная материя пребывает в обычном газообразном состоянии.
Строение белых карликов
Природа процессов, протекающих в недрах стареющей звезды, отражается на ее строении. Первым отличительным признаком белого карлика является его атмосфера. Анализируя данные оптических наблюдений, напрашивается вывод: толщина атмосферного слоя у такой звезды составляет всего несколько сотен метров. Судя по составу спектра, каждый из таких объектов имеет свой химический состав. В связи с этим, белые карлики делятся на два типа:
- горячие звезды;
- холодные звезды.
Для первого типа основными компонентами являются ограниченное количество водорода (не более 0,05%), гелий, углерод, кальций, железо и титан (звездный металл). Горячие белые карлики имеют температуру 50000К. Для второго типа белых карликов основным компонентом является гелий. Атомов водорода в таких звездах один на миллион. Холодные карлики разогреты в десятки раз меньше, всего до отметки 5000К. Первые «водородные» белые карлики относятся к спектральному классу DA, вторые — «гелиевые» — относятся к белым карликам типа DB.
Строение белого карлика
Атмосфера белого карлика покрывает область оставшейся невырожденной материи, в которой присутствует ограниченное количество свободных электронов. Этот слой имеет толщину в 150-170 км, занимая 1% радиуса стареющей звезды. Толщина слоя невырожденной материи может меняться по мере старения объекта, однако размер звезды остается тем же. В таком состоянии белый карлик может находиться до самой своей кончины. Окончательные размеры белых карликов определятся его массой. Как и в случае с минимальной предельной массой, существует критический порог размеров подобных объектов.
Ученые допускают минимально возможный радиус для белых карликов в 10 тыс. км.
Минимальный размер белого карлика
Под слоем невырожденной материи начинается царство релятивистского вырожденного электронного газа, который представляет собой изотермически выделенную субстанцию. Температура здесь постоянная по всем направлениям и составляет миллионы градусов Кельвина. Тепловая энергия передается от внутренних областей звезды к поверхности, излучаясь в окружающее космическое пространство. Подобные процессы не позволяют телу светиться ярким светом. Основной поток тепловой энергии представлен рентгеновским излучением.
Когда стали известны белые карлики?
Несмотря на то, что первым белым карликом, открытым астрофизиками, считается Сириус В, имеются сторонники версии более раннего знакомства научного сообщества со звездными объектами этого класса. Еще в 1785 году астроном Гершель впервые включил в звездный каталог тройную звездную систему в созвездии Эридана, разделив все звезды по отдельности. Только спустя 125 лет астрономы выявили аномально низкую светимость 40 Эридана В при высокой цветовой температуре, что послужило поводом для выделения таких объектов в отдельный класс.
Объект обладал слабым блеском, соответствующим звездной величине +9,52m. Белый карлик обладал массой ½ солнечной и имел диаметр меньше земного. Эти параметры противоречили теории внутреннего строения звезд, где светимость, радиус и температура поверхности звезды являлись ключевыми параметрами определения класса звезды. Маленький диаметр, низкая светимость с точки зрения физических процессов не соответствовали высокой цветовой температуре. Такое несоответствие вызывало много вопросов.
Аналогичным образом выглядела ситуация с другим белым карликом — Сирусом В. Являясь спутником самой яркой звезды белый карлик имеет небольшие размеры и огромную плотность звездного вещества — 106 г/см3. Для сравнения, вещество этого небесного светила количеством со спичечный коробок весило бы на нашей планете более миллиона тонн. Температура этого карлика в 2,5 раза выше главной звезды системы Сириус.
Последние научные выводы
Небесные светила, с которыми мы имеем дело, представляют собой естественный природный полигон, благодаря которому человек может изучить строение звезд, этапы их эволюции. Если рождение звезд можно объяснить физическими законами, которые одинаково действуют в любой обстановке, то эволюция звезд представлена совершенно иными процессами. Научное объяснение многих из них переходит в категорию квантовой механики, науки об элементарных частицах.
Белые карлики выглядят в этом свете самыми загадочными объектами:
- Во-первых, очень любопытно выглядит процесс вырождения ядра звезды, в результате которого звездное вещество не разлетается в космосе, а наоборот, сжимается до невообразимых размеров;
- Во-вторых, при отсутствии термоядерных реакций, белые карлики остаются достаточно горячими космическими объектами;
- В-третьих, эти звезды, имея высокую цветовую температуру, обладают низкой светимостью.
На эти и многие другие вопросы учеными всех мастей, астрофизикам, физикам и ядерщикам еще предстоит дать ответы, которые позволят предугадать судьбу нашего родного светила. Солнце ожидает судьба белого карлика, однако остается под вопросом, сможет ли человек наблюдать Солнце в этой роли.
Строение белых карликов
Природа процессов, протекающих в недрах стареющей звезды, отражается на ее строении. Первым отличительным признаком белого карлика является его атмосфера. Анализируя данные оптических наблюдений, напрашивается вывод: толщина атмосферного слоя у такой звезды составляет всего несколько сотен метров. Судя по составу спектра, каждый из таких объектов имеет свой химический состав. В связи с этим, белые карлики делятся на два типа:
- горячие звезды;
- холодные звезды.
Для первого типа основными компонентами являются ограниченное количество водорода (не более 0,05%), гелий, углерод, кальций, железо и титан (звездный металл). Горячие белые карлики имеют температуру 50000К. Для второго типа белых карликов основным компонентом является гелий. Атомов водорода в таких звездах один на миллион. Холодные карлики разогреты в десятки раз меньше, всего до отметки 5000К. Первые «водородные» белые карлики относятся к спектральному классу DA, вторые — «гелиевые» — относятся к белым карликам типа DB.
Строение белого карлика
Атмосфера белого карлика покрывает область оставшейся невырожденной материи, в которой присутствует ограниченное количество свободных электронов. Этот слой имеет толщину в 150-170 км, занимая 1% радиуса стареющей звезды. Толщина слоя невырожденной материи может меняться по мере старения объекта, однако размер звезды остается тем же. В таком состоянии белый карлик может находиться до самой своей кончины. Окончательные размеры белых карликов определятся его массой. Как и в случае с минимальной предельной массой, существует критический порог размеров подобных объектов.
Ученые допускают минимально возможный радиус для белых карликов в 10 тыс. км.
Минимальный размер белого карлика
Под слоем невырожденной материи начинается царство релятивистского вырожденного электронного газа, который представляет собой изотермически выделенную субстанцию. Температура здесь постоянная по всем направлениям и составляет миллионы градусов Кельвина. Тепловая энергия передается от внутренних областей звезды к поверхности, излучаясь в окружающее космическое пространство. Подобные процессы не позволяют телу светиться ярким светом. Основной поток тепловой энергии представлен рентгеновским излучением.
История открытия белых карликов
Современная наука о звездах обрела свои реальные очертания только в середине XX века. Уже в начале 30-х годов ученые-астрофизики могли свободно рассчитать параметры любой наблюдаемой звезды: ее светимость, размеры и температуру. На этом фоне явно выделялся один объект, который портил всю стройную картину — звезда 40 Эридана В, обнаруженная еще в далеком 1783 году известным астрономом Уильямом Гершелем. В отличие от привычных звезд для этого светила было характерно явное несоответствие: небольшие размеры, низкая светимость и высокая температура. Подобные факты шли в разрез со всеми существующими законами физики. Со временем удалось обнаружить еще несколько подобных объектов, одним из которых стал Сириус В. Да, именно Сириус В – скромная маленькая звездочка, пребывающая в тени своей ослепительной соседки Сириуса.
Поводом к открытию стало наблюдением за поведением Сириуса, которое проводил немецкий астроном Вильгельм Бессель. Ему удалось обнаружить неестественное для звезды движение. Сириус двигался в космическом пространстве по синусоиде. Долгие годы ученый ломал голову над этой загадкой, пока не пришел к выводу, что рядом с Сириусом расположена другая звезда, небольшая и едва заметна. Именно ее гравитационные силы воздействуют на поведение Сириуса. Позже, в 1862 году А. Кларку удалось с помощью мощного оптического телескопа обнаружить невзрачного соседа Сириуса. Таким образом, выяснилось, что предсказания и расчеты Бесселя оказались правильными.
Наблюдение за Сириусом
Уже в XX веке удалось выяснить, что «двойник Сириуса» имеет температуру 25000К выше, чем у самой яркой звезды. Небольшие размеры столь горячего тела наталкивали ученых на мысль, что причина такого состояния — высокая плотность объекта. Это открытие в корне перевернуло всю устоявшуюся теорию о происхождении звезд. Появился новый и важный элемент в эволюции звездного населения галактик Вселенной. Наука получила в свои руки доказательства природы старения звезд.
Последние научные выводы
Небесные светила, с которыми мы имеем дело, представляют собой естественный природный полигон, благодаря которому человек может изучить строение звезд, этапы их эволюции. Если рождение звезд можно объяснить физическими законами, которые одинаково действуют в любой обстановке, то эволюция звезд представлена совершенно иными процессами. Научное объяснение многих из них переходит в категорию квантовой механики, науки об элементарных частицах.
Белые карлики выглядят в этом свете самыми загадочными объектами:
- Во-первых, очень любопытно выглядит процесс вырождения ядра звезды, в результате которого звездное вещество не разлетается в космосе, а наоборот, сжимается до невообразимых размеров;
- Во-вторых, при отсутствии термоядерных реакций, белые карлики остаются достаточно горячими космическими объектами;
- В-третьих, эти звезды, имея высокую цветовую температуру, обладают низкой светимостью.
На эти и многие другие вопросы учеными всех мастей, астрофизикам, физикам и ядерщикам еще предстоит дать ответы, которые позволят предугадать судьбу нашего родного светила. Солнце ожидает судьба белого карлика, однако остается под вопросом, сможет ли человек наблюдать Солнце в этой роли.